优美文档网
扫码关注优美文档网

手机扫描二维码

初一上册数学计算题

农业知识文档网编辑:佚名2023-11-15 15:10:46知识问答

初一上册数学计算题

初一数学测试题 姓名:

一、单项选择 (每小题3分,共30分)

1、一个数的立方等于它本身,这个数是 ( )

A、0 B、1 C、-1,1 D、-1,1,0

2、下列各式中,不相等的是 ( )

A、(-3)2和-32 B、(-3)2和32 C、(-2)3和-23 D、|-2|3和|-23

3、(-1)200+(-1)201=( )

A、0 B、1 C、2 D、-2

4、有一组数为:-1,1/2,-1/3,1/4,-1/5,1/6,…找规律得到第7个数是( )

A、-1/7 B、1/7 C、-7 D、7

5、下列说法正确的是( ) A、有理数的绝对值一定是正数

B、如果两个数的绝对值相等,那么这两个数相等

C、如果一个数是负数,那么这个数的绝对值是它的相反数

D、绝对值越大,这个数就越大

6、比较-1/5与-1/6的大小,结果为 ( )

A、> B、< C、= D、不确定

7、下列说法中错误的是( )

A、零除以任何数都是零。 B、-7/9的倒数的绝对值是9/7。

C、相反数等于它的本身的数是零和一切正数。

D、除以一个数,等于乘以它的倒数。

8、(-m)101>0,则一定有( )

A、m>0 B、m<0 C、m=0 D、以上都不对

9、一个正整数n与它的倒数1/n、相反数-n相比较,正确的是 ( )

A、-n≤n≤1/n B、-n<1/n<n

C、1/n<n<-n D、-n<1/n≤n

二、填空题 每小题3分,共30分)

1、12的相反数与-7的绝对值的和是____________________。

2、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________________。

3、在数轴上,-4与-6之间的距离是____________________。

4、若a=6,b=-2,c=-4,并且a-b+(-c)-(-d)=1,则d的值是__________。

5、若一个数的50%是-5.85,则这个数是_________________。

6、一个数的平方等于81,则这个数是____________________。

7、如果|a|=2.3,则a=__________________________。

8、计算-|-6/7|=___________________。

9、绝对值大于2而小于5的所有数是____________________。

10、有一列数,观察规律,并填写后面的数,-5,-2,1,4,_______,________,________。

三、计算题 (每小题5分,共20分)

1、-15+6÷(-3)×1/2 2、(1/4-1/2+1/6)×24

3、|-5/14|×(-3/7)2÷3/14 4、2/3+(-1/5)-1+1/3

四、解答题 (每小题10分,共20分)

1、某地探空气球地气象观测资料表明,高度每增加1千米、气温就大约降低6℃,若该地区地面温度为21℃,高空某处温度为-39℃,求此处的高度为多少千米?

2、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克) 2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5

这10名学生的总体重为多少?平均体重为多少?

七年级(上)数学期末测试题
班级 姓名 分数______
一、耐心填一填(每小题3分,共30分)
1.(1)1.4的相反数是 ; (2) 的倒数是 ;(3)— = .
2.已知 ,则-nm= .
3.已知 为一元一次方程,则n= .
4.如图,它是一个正方体的展开图,若正方体的对面表示的数互为相反数,则a-(b-c)= .
5.延长线段AB到C,使BC= AB,反向延长AC到D使AD= AC,若AB=8cm,则CD= .
6.在线段AB上再添上 个点,能使线段AB上共有15条不同的线段.
7.质检员抽查一批零件的合格率。已知零件的规定尺寸为30±0.5cm。现抽查了10个零件,检查结果为:30.3,30.0,30.4,29.4,29.9,30.2,29.8,30.6,29.5,30.5(单位:cm),则这批零件的合格率为 .
8.某商场在“十.一”长假期间每天营业额是15万元,由此推算10月份的总营业额约为15×31=465(万元),你认为这样的推算是否合理?答: .
9.已知∠AOB=50°,∠BOC=30°则∠AOC= .
10.为了明春的教学,请你根据今秋教学中存在的问题,向数学老师提一点建议:

二、精心选一选,你一定慧眼识金(2分×8=16分)
11.-22与(-2)2 ( )
A.相等 B.互为相反数 C .互为倒数 D.它们的积为16
12.已知有理数a、b在数轴上的位置如图所示,则a、-a、b、-b之间的大小关系是( )
A.-a<-b<a<b
B. a<-b<b<-a
C.-b<a<-a<b
D.a<b<-b<-a
13.小明想知道银河系里恒星大约有多少颗,他通过( )获取有关资料.
A.问卷调查 B.实地考察 C.查阅文献资料 D.实验
14.用四舍五入把0.06097精确到千分位的近似值的有效数字是( )
A.0、6、0 B.0、6、1、0 C.6、0、9 D.6、1
15.下列展开图中是左图的展开图的是( )




A B C D
16.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是( )
A.两点之间线段最短;B.两点确定一条直线; C.线段可以大小比较;D.线段有两个端点
17.为了估计湖中有多少条鱼,从湖里捕捉50条鱼做记号,然后放回湖里,经过一段时 间,等带记号的鱼完全混于鱼群中,在捕捉第二次鱼200条,有10条做了记号,则估计湖里有鱼( )
A .400条 B .600条 C .800条 D .1000条
18.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x个零件,则所列方程为( )
A.13x=12(x+10)+60 B.12(x+10)=13x+60
C. D.
三、细心解一解,你一定是数学行家!
19.展示你的运算能力(4分×2=8分)
(1) (2) )





20.展示你解方程的能力(4分×2=8分)
(1)3(20-y)=6y-4(y-11) (2)









21.一个角的补角加上10°后,等于这个角的余角的3倍,求这个角。(6分)








22.相信你一定行!(8分)
已知a与b互为相反数,c、d互为倒数, ,y不能作除数,
求 的值.









23.如图,∠COD=116°,∠BOD=90°,OA平分∠BOC, 求∠AOD的度数.(6分)














四、用心想一想,成功一定属于你!
24.当一个明白的消费者.(8分)
仔细观察下图,认真阅读对话.













小朋友:阿姨,我买一盒饼干和一袋牛奶。(递上10元钱)
售货员:小朋友,本来你用10元钱买一盒饼干是有多的,但要买一袋牛奶就少1元钱啦!今天是儿童节,我给你买的饼干打八折,两样的东西请拿好,还找你8角钱。
根据对话内容,请求出饼干和牛奶的标价是多少元?


















25.探索与发现(2分+2分+2分+4分=10分)
将连续的奇数1,3,5,7,9……,排成如图所示的数阵.(1)十字框中的五个数的和与中间数15有什么关系?
(2)设中间数为a,用代数式表示十字框中五数之和.
(3)将十字框中上下左右平移,可框住另外五个数,这五个数的和还有这种规律吗?
(4)十字框中五个数之和能等于2005吗?若能,请写出这五个数;若不能,说明理由.

1 3 5 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47 49
……

帮忙找初一的数学题。要80到解方程,80到不等式,10到应用题。谢谢了!!!拜托。

就是~直接网上搜嘛,很简单的。
你打关键字“解方程”、“不等式”、“应用题”在“求解答”网站上面就有了!

五十道初一数学题,随便。

一、 填空题(1×28=28)
1、 下列代数式中:①3x+5y ②x2+2x+y2 ③0 ④-xy2 ⑤3x=0 ⑥ 单项式有 _____个,多项式有_____ 个.
2、 单项式-7a2bc的系数是______, 次数是______.
3、 多项式3a2b2-5ab2+a2-6是_____次_____项式,其中常数项是_______.
4、 3b2m•(_______)=3b4m+1 -(x-y)5(x-y)4=________ (-2a2b)2÷(_______)=2a
5、 (-2m+3)(_________)=4m2-9 (-2ab+3)2=_____________
6、 如果∠1与∠2互为补角,∠1=72º,∠2=_____º ,若∠3=∠1 ,则∠3的补角为_______º ,理由是__________________________.
7、 在左图中,若∠A+∠B=180º,∠C=65º,则∠1=_____º,
A 2 D ∠2=______º.

B C
8、 在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).
9、 在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字.
10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P(小明被选中)= ________ , P(小明未被选中)=________.
11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中.
⑴、掷出的点数是偶数 ⑵、掷出的点数小于7
⑶、掷出的点数为两位数 ⑷、掷出的点数是2的倍数

0 1/2 1
不可能发生 必然发生

二、 选择题(2×7=14)
1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy- y2)-(- x2+4xy- y2)=
- x2_____+y2空格的地方被钢笔水弄污了,那么空格中的一项是( )
A 、-7xy B、7xy C、-xy D、xy
2、下列说法中,正确的是( )
A、一个角的补角必是钝角 B、两个锐角一定互为余角
C、直角没有补角 D、如果∠MON=180º,那么M、O、N三点在一条直线上
3、数学课上老师给出下面的数据,( )是精确的
A、 2002年美国在阿富汗的战争每月耗费10亿美元
B、 地球上煤储量为5万亿吨以上
C、 人的大脑有1×1010个细胞
D、 这次半期考试你得了92分
4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )
A、 B、
C、 D、
5、已知:∣x∣=1,∣y∣= ,则(x20)3-x3y2的值等于( )
A、- 或- B、 或 C、 D、-
6、下列条件中不能得出a‖b 的是( ) c
A、∠2=∠6 B、∠3+∠5=180º 1 2 a
C、∠4+∠6=180º D、∠2=∠8 5 6 b

7、下面四个图形中∠1与∠2是对顶角的图形有( )个
A、0 B、1 C、2 D、3
三、 计算题(4×8=32)
⑴ -3(x2-xy)-x(-2y+2x) ⑵ (-x5)•x3n-1+x3n•(-x)4

⑶ (x+2)(y+3)-(x+1)(y-2) ⑷ (-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8

⑸ (5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹ (3mn+1)(3mn-1)-(3mn-2)2

用乘法公式计算:
⑺ 9992-1 ⑻ 20032

四、 推理填空(1×7=7)
A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠2
E 求证:CD⊥AB
F 证明:∵DG⊥BC,AC⊥BC(___________)
D ∴∠DGB=∠ACB=90º(垂直的定义)
∴DG‖AC(_____________________)
B C ∴∠2=_____(_____________________)
∵∠1=∠2(__________________) ∴∠1=∠DCA(等量代换)
∴EF‖CD(______________________) ∴∠AEF=∠ADC(____________________)
∵EF⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD⊥AB

五、 解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)
1、 小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?

2、 已知:如图,AB‖CD,FG‖HD,∠B=100º,FE为∠CEB的平分线,
求∠EDH的度数.
A F C
E
B H
G
D

3、下图是明明作的一周的零用钱开支的统计图(单位:元)

分析上图,试回答以下问题:
⑴、 周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?
⑵、 哪几天他花的零用钱是一样的?分别为多少?
⑶、 你能帮明明算一算他一周平均每天花的零用钱吗?
能力测试卷(50分)
(B卷)
一、 填空题(3×6=18)
1、 房间里有一个从外表量长a米、宽b米、高c米的长方形木箱子,已知木板的厚度为x米,那么这个木箱子的容积是________________米3.(不展开)
2、 式子4-a2-2ab-b2的最大值是_______.
3、 若2×8n×16n=222,则n=________.
4、 已知 则 =__________.
5、 一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________.
6、 A 如图,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,
D E DE过O点,且DE‖BC,则∠BOC=_______º.
B C

二、 选择题(3×4=12)
1、一个角的余角是它的补角的 ,则这个角为( )
A、60º B、45º C、30º D、90º
2、对于一个六次多项式,它的任何一项的次数( )
A、都小于6 B、都等于6 C、都不小于6 D、都不大于6
3、式子-mn与(-m)n的正确判断是( )
A、 这两个式子互为相反数 B、这两个式子是相等的
C、 当n为奇数时,它们互为相反数;n为偶数时它们相等
D、 当n为偶数时,它们互为相反数;n为奇数时它们相等
4、已知两个角的对应边互相平行,这两个角的差是40º,则这两个角是( )
A、140º和100º B、110º和70º C、70º和30º D、150º和110º

四、解答题(7×2=14)
1、若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x2、x3项,求(a-b)3-(a3-b3)的值.
第01题 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.
问这牛群是怎样组成的? 第02题一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.
问这4块砝码碎片各重多少? 第03题 a头母牛将b块地上的牧草在c天内吃完了;
a'头母牛将b'块地上的牧草在c'天内吃完了;
a"头母牛将b"块地上的牧草在c"天内吃完了;
求出从a到c"9个数量之间的关系? 第04题 在下面除法例题中,被除数被除数除尽:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置. 第07题 可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形? 第08题 n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法? 第09题 当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂. 第10题求证n个正数的几何平均值不大于这些数的算术平均值. 第11题确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np. 第12题 求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值. 第13题将指数函数ex变换成各项为x的幂的级数. 第14题 麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series 不用对数表,计算一个给定数的对数. 第15题 不用查表计算已知角的正弦及余弦三角函数. 第16题 在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列

50道初一上册数学题(不要简单的,稍微难一点)拜托了……

一、单项选择 (每小题3分,共30分)

1、一个数的立方等于它本身,这个数是 ( )

A、0 B、1 C、-1,1 D、-1,1,0

2、下列各式中,不相等的是 ( )

A、(-3)2和-32 B、(-3)2和32 C、(-2)3和-23 D、|-2|3和|-23

3、(-1)200+(-1)201=( )

A、0 B、1 C、2 D、-2

4、有一组数为:-1,1/2,-1/3,1/4,-1/5,1/6,…找规律得到第7个数是( )

A、-1/7 B、1/7 C、-7 D、7

5、下列说法正确的是( ) A、有理数的绝对值一定是正数

B、如果两个数的绝对值相等,那么这两个数相等

C、如果一个数是负数,那么这个数的绝对值是它的相反数

D、绝对值越大,这个数就越大

6、比较-1/5与-1/6的大小,结果为 ( )

A、> B、< C、= D、不确定

7、下列说法中错误的是( )

A、零除以任何数都是零。 B、-7/9的倒数的绝对值是9/7。

C、相反数等于它的本身的数是零和一切正数。

D、除以一个数,等于乘以它的倒数。

8、(-m)101>0,则一定有( )

A、m>0 B、m<0 C、m=0 D、以上都不对

9、一个正整数n与它的倒数1/n、相反数-n相比较,正确的是 ( )

A、-n≤n≤1/n B、-n<1/n<n

C、1/n<n<-n D、-n<1/n≤n
1、D
4、A
5、C
6、B
7、D
8、B
9、D
(1) 66x+17y=3967
25x+y=1200
答案:x=48 y=47
(2) 18x+23y=2303
74x-y=1998
答案:x=27 y=79
(3) 44x+90y=7796
44x+y=3476
答案:x=79 y=48
(4) 76x-66y=4082
30x-y=2940
答案:x=98 y=51
(5) 67x+54y=8546
71x-y=5680
答案:x=80 y=59
(6) 42x-95y=-1410
21x-y=1575
答案:x=75 y=48
(7) 47x-40y=853
34x-y=2006
答案:x=59 y=48
(8) 19x-32y=-1786
75x+y=4950
答案:x=66 y=95
(9) 97x+24y=7202
58x-y=2900
答案:x=50 y=98
(10) 42x+85y=6362
63x-y=1638
答案:x=26 y=62
(11) 85x-92y=-2518
27x-y=486
答案:x=18 y=44
(12) 79x+40y=2419
56x-y=1176
答案:x=21 y=19
(13) 80x-87y=2156
22x-y=880
答案:x=40 y=12
(14) 32x+62y=5134
57x+y=2850
答案:x=50 y=57
(15) 83x-49y=82
59x+y=2183
答案:x=37 y=61
(16) 91x+70y=5845
95x-y=4275
答案:x=45 y=25
(17) 29x+44y=5281
88x-y=3608
答案:x=41 y=93
(18) 25x-95y=-4355
40x-y=2000
答案:x=50 y=59
(19) 54x+68y=3284
78x+y=1404
答案:x=18 y=34
(20) 70x+13y=3520
52x+y=2132
答案:x=41 y=50
(21) 48x-54y=-3186
24x+y=1080
答案:x=45 y=99
(22) 36x+77y=7619
47x-y=799
答案:x=17 y=91
(23) 13x-42y=-2717
31x-y=1333
答案:x=43 y=78
(24) 28x+28y=3332
52x-y=4628
答案:x=89 y=30
(25) 62x-98y=-2564
46x-y=2024
答案:x=44 y=54
(26) 79x-76y=-4388
26x-y=832
答案:x=32 y=91
(27) 63x-40y=-821
42x-y=546
答案:x=13 y=41
(28) 69x-96y=-1209
42x+y=3822
答案:x=91 y=78
(29) 85x+67y=7338
11x+y=308
答案:x=28 y=74
(30) 78x+74y=12928
14x+y=1218
答案:x=87 y=83
------------------------------------------------------
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢**,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米

18.某校买来7只篮球和10只**共付248元。已知每只篮球与三只**价钱相等,问每只篮球和**各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只**:8
18小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元







这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。

解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
19为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
19某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?


设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员



20现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?


设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%


21甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙


22甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。



设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

23甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)


设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288


24甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒



25两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
26.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

27.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!

二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
28已知某服装厂现在有A布料70M,B布料52M,现计划用这两种布料生产M.N的服装80套.已知做一套M服装用A料0.6M,B料0.9M,做一套N服装工用A料1.1M,B 料0.4M
1)设生产M服装X件,写出关于X的不等式组
2)有哪几种符合题意的生产方案?
3)若做一套M服装可获利45元,N服装获利50元,问:那种射击方案可使厂获利最大?利润是多少?

1).解:设生产M服装X件
0.6x+1.1(80-x)≤70 ①
0.9x+0.4(80-x)≤52 ②
解得①x≥36
②x≤40 即36≤x≤40
2).方案一:M服装36套 N服装44套
方案二:M服装37套 N服装43套
方案三:M服装38套 N服装42套
方案四:M服装39套 N服装41套
方案五:M服装40套 N服装40套
3).方案一:45×36+50×44=3820(元)
方案二:45×37+50×43=3815(元)
方案三:45×38+50×42=3810(元)
方案四:45×39+50×41=3805(元)
方案五:45×40+50×40=3800(元)


29小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为二元和三十二元,经了解,这两种灯的照明效果和使用寿命都一样。已知小王所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算? 《用电量(度)=功率(千瓦)x时间

解:

设时间为x小时时小王选择节能灯才合算:
0.5*100/1000x+2>0.5*40/1000x+32
0.5*0.1x+2>0.5*0.04x+32
0.05x+2>0.02x+32
0.05x-0.02x>32-2
0.03x>30
x>1000

答:当这两种灯的使用寿命超过1000个小时时,小王选择节能灯才合算。
1.有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?

2.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高?

3.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?

4.某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?

5.甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?

参考答案:
1.解设:这根铁丝原来长X米。
X-[1/2(1/2X-1)+1]=2.5
X=4
2.解设:高为Xmm
100·100·Л·X=300·300·80
X=720Л
3.解设:走X千米
X/50=[X-(40·6/60)]/40
X=4
4.甲:打9折后球拍为:22.5元/只 球为1.8元/只
球拍22.5·2=45元 球:(90-45)÷1.8=25(只)
乙: 25·2=50(元){送两只球}
需要买的球:(90-50)÷2=20(只)
一共的球:20+2=22(只)
甲那里可以买25只,而乙只能买22只.
所以,甲比较合算.
5.解设:每份为X
甲:5X 乙:6X 丙:9X
5X+9X=6X·2+12
X=6
所以:甲:5·6=30(本)
乙:6·6=36(本)
丙:9·6=54(本)
1.巡逻车每天行驶200千米,每辆巡逻车可以装载供行驶14天的汽油。现有5辆巡逻车,同时从A地出发,为了让其中三辆车尽可能向更远的地方巡逻(然后一起返回),甲乙两车行至B处后,仅留足自己返回基地的汽油,将多余的汽油供给其他车使用,问其他三辆车最远行驶距离是多少?
甲乙跑4天。留下返回用的4天的油,其余的12天的油给另外3辆车,这样另外3辆车还可以跑5天,于是最远可跑
200千米乘以9等于1800千米哦
2.甲、乙两人今年年龄之和为63,当甲的年龄是乙现在年龄的一半时,乙恰是甲现在的年龄,甲、乙两人今年各是多少岁?一:解:设甲今年的年龄是x岁,乙今年的年龄是y岁,依题意,得
x + y = 63

y-(x-1/2 y)= x
解之,得
x = 27

y = 36

答:甲今年的年龄是27岁,乙今年的年龄是36岁
二:解:设甲今年的年龄是x岁,乙今年的年龄是y岁,经过m年甲年龄是乙今年年龄的一半,依题意,得
x + y = 63
x + m = 1/2 y
y + m = x
解之,得
x = 27
y = 36
答:甲今年的年龄是27岁,乙今年的年龄是36岁
三:解:设乙今年的年龄是x岁,所以甲今年的年龄是(63-x)岁,依题意,得
1/2 x-(63-x)= 63-2x
解之,得 x = 36
所以 63-x = 63-36 = 27
答:甲今年的年龄是27岁,乙今年的年龄是36岁
学生四:解:依题意,得乙今年的年龄是:
63 ÷( 1/2 ÷ 2 + 1/2 + 1) = 36 (岁)
所以甲今年的年龄是 63-36 = 27(岁)
答:甲今年的年龄是27岁,乙今年的年龄是36岁
3..国家某部委有A,B,C三个机关,这三个机关的公务员依次为88人,52人,60人.在今年机构改革中,要求三个机关按相同比例裁员,使三个机关共留下公务员150人,那么C机关流下的人数是多少人?
解法一:x+52x/60+88x/60=150 则x=45
解法二:x+52x/60+88x/60=(88+52+60)-150 则x=15
4.抄写一份材料,如果每分钟抄30个字 ,则若干小时可抄完,当抄写到2\5的时候,由于改变方法,将工作效率提高40%,结果提前半小时抄完,问这份材料共有多少字?
设这份材料共有x字,则:x/30-30=(x/30)*(2/5)+(x*3/5)/(30*140%)
解得:x=5250
5..现有含盐15%的盐水400g,张老师要求盐水浓度变为12%,某同学通过计算后加进了110g水,请你通过列方程求解验证该同学加进的水量是否正确
设需加水x克,则:(400+x)*12%=400*15% 解得x=100
一片牧场,草每天均匀生长,若其放牧36只羊,8天吃完牧草,若其放牧30只羊,10天吃完牧草,若其放牧6头牛,多少天可以吃完牧草?(已知3只羊吃1天的牧草正好是1头牛吃1天的牧草)
已知3只羊吃1天的牧草正好是1头牛吃1天的牧草,所以我们可以用条件来替换一下,把:36只羊,8天吃完牧草改成12头牛,8天吃完牧草,因为已知条件告诉了3只羊吃1天的牧草正好是1头牛吃1天的牧草,所以我们就把36除以3,得到12.问题是6头牛,和我们刚刚算出的结果有关系,所以我们把条件同时除以2,得到6头牛,4天吃完牧草.
小李从家里到学校上学,他以75M/分的速度走了3分钟时发觉按这个速度走要迟到2分钟,于是他改变速度为90M/分,结果提前4分钟到达。他在上课前多少分从家出发?
小李从家里到学校上学,他以75M/分的速度走了3分钟时发觉按这个速度走要迟到2分钟,于是他改变速度为90M/分,结果提前4分钟到达。他在上课前多少分从家出发?

设他上课前X分出发,那么距离是:75*(X+2)

75(X+2)=75*3+90*(X-3-4)

X=37

答:他应在上课前37分出发。
一辆慢车以每小时48千米的速度从甲站开出,过了45分钟,一辆快车以每小时60千米的速度也从甲站出发,走与慢车相同的路线,快车经过几小时可以追上慢车?
一辆慢车以每小时48千米的速度从甲站开出,过了45分钟,一辆快车以每小时60千米的速度也从甲站出发,走与慢车相同的路线,快车经过几小时可以追上慢车?

设经过X小时追上

X[60-48]=48*45/60

X=3

即3小时后追上
一个两位数,十位上的数字是个位上的数字的2倍,如果把十位上的数与个位上的数对调,那么得到的数就比原来的数小36,求原来的两位数
一个两位数,十位上的数字是个位上的数字的2倍,如果把十位上的数与个位上的数对调,那么得到的数就比原来的数小36,求原来的两位数

设十位上是X,个位上是Y

X=2Y

(10X+Y)-36=10Y+X

化简:9X-9Y=36

X-Y=4

解得:X=8;Y=4

答:二位数是:84

这累的.........

七年级上学期数学学过的26个知识点梳理 要用26张A4纸,简单点~或者简单说一下怎么画。谢谢!

我可以帮助你,但没懂到什么意思,你要什么样的。

求初一上册数学几何题50道,要答案!急!!!!!

1. 在ΔABC中 ,AB=AC,点 D.E分别在AC.AB上,且BC=BD=DE=EA,求∠A的度数。

2. 在ΔABC中,∠C=90 ,DE是AB的垂直平分线交BC于D,垂足为E,∠BAD:∠CAB=1:3,求∠B的度数。

3. BD平分∠ABC,DE⊥AB,DF⊥BC,E.F为垂足,连结EF。(1)图中有等腰三角形吗?如有,写出来,并说理。(2)BD与EF垂直吗?为什么?
钟表中2时15分,时针与分针的夹角为()。
⒒18°43′26〃=
⒓180°÷7(精确到′)=
⒔一个轮子滚动了三圈用了6分钟,则每秒中轮子滚动过的角度是()。
⒕从下午3点45分到晚上8点21分,时钟的时针转过()度。
⒗由2点15分到2点30分,时钟的分针转过的角度是()。
⒘钟表在整点时,时针与分镇的夹角会出现5种度数相等的情况,请分别写出它们的度数。

4. 已知等腰三角形一边长为5,另一边为6,则它的周长为

5 . 在△ABC中,AB=AC,∠A=3∠B,则∠A= ∠C=

6 . 如图(1),△ABC中∠C=90�0�2,∠B=30�0�2,CD为AB边上的高,E是AB上一点,且CE=BE.
(1) 写出图中所有的等腰三角形

(2) 写出图中所有的等边三角形

(3) 若DE=2cm,则AB= cm,AC= cm.

7. 已知等腰△ABC的周长为24cm,且底边减去一腰长的差为3cm,

则这个三角形的底边为

8.若等腰三角形的一个外角为100�0�2,则它的三个内角为

9.一个等腰三角形的一边长为6,一外角为120�0�2,则它的周长为

10.如图(2),已知AB=AC,AD=BD=BC,则△ABC的三个内角为

11.等腰三角形的顶角为70�0�2,则一腰上的高与底边的夹角为

12.等腰三角形一腰上的高与另一腰的夹角为35�0�2,则这个等腰三角形的底角为

13.等腰三角形的周长为,一腰上的中线把周长分成5:3,则三角形的底边长为. 等腰三角形两个角的比为4:1,顶角为

∠p=25�0�2,且PA=AB=BC=CD,则∠CDE的度数为 ,∠DCF的度数为

14. 如图(2),△ABC中,AB=AC,AD⊥BC于D,△ABC的周长为50 cm,而AB+BD=AD=40 cm,则AD=

15. 如图(3)△ABC中,AB=AC,且EB=BD=DC=CF,∠A=40�0�2,则∠EDF=

16 . 如图(4)△ABC中,AB=AC,AD=BD,AC=CD,则∠B=

17 .. 等腰三角形一腰上的中线把周长分为15和12两部分,则它的底边长是

18. 等腰三角形的周长为26 cm,以一腰为边作等边三角形,其周长为30 cm,则等腰三角形的底边长为

初一数学上册知识点

初一数学上册复习教学知识点归纳总结

一:有理数
知识网络:
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2) 同级运算,从左到右进行;
(3) 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)

注:黑体字为重要部分
二:整式的加减
知识网络:
概念、定义:
1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
2、单项式中的数字因数叫做这个单项式的系数(coefficient)。
3、 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree of a monomial)。
4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly
term)。
5、多项式里次数最高项的次数,叫做这个多项式的次数(degree of a polynomial)。
6、把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
三:一元一次方程
知识网络:
概念、定义:
1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
6、把等式一边的某项变号后移到另一边,叫做移项。
7、应用:行程问题:s=v×t 工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本 利率=利润÷成本×100%
售价=标价×折扣数×10% 储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
三:图形初步认识
知识网络:
概念、定义:
1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。
5、几何体简称为体(solid)。
6、包围着体的是面(surface),面有平的面和曲的面两种。
7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
8、点动成面,面动成线,线动成体。
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection)。
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance)。
14、角∠(angle)也是一种基本的几何图形。
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector)。
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
angle),即其中的每一个角是另一个角的余角。
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary
angle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等。

我要20道初一上数学几何题(填空的),要配答案,好的我会追加100分

1、72°20′的角的余角等于_____;25°31′的角的补角等于______。
答案:17°41′;154°29′。
2、一个角是70°39′,求它的余角和补角。余角_____,补角______。
答案:19°21′;109°21′。
3、一个角的补角是它的3倍,这个角是_______度。
答案:45。
4、如果∠1=∠2,∠2=∠3,则∠1_____∠3,
如果∠1>∠2,∠2>∠3,则∠1_____∠3。
答案:=;>。
5、互余且相等的两个角都是______。
答案:45°。
6、长方体是由_____个面、______条棱、______个顶点组成的。
答案:6;12;8。
7、时钟的分针1小时转了_____度的角,1分钟转了_____度的角。
答案:360;6。
8、如果∠1=65°15′,,∠2=78°30′,∠3=______。(∠1+∠2+∠3=180°)
答案:36°15′。
9、一个钝角与一个锐角的差是_____角。
答案:无法确定。
10、把一个周角n等分,每份是18°,则n=_____。
答案:20。
11、直线和射线比较,____长。
答案:无法确定。
12、一条直线上有____个点,直线是向两方______。
答案:无数;无限延伸。
13、两条不同的直线,如果它们有一个公共点,那么它们_____。
答案:相交。
14、已知线段AC=12㎝,B是AC的三等分点,AB=_____cm。
答案:4或8。
15、线段有____个端点;射线有_____个端点;直线有_____个端点;线段和射线都是_____的一部分。
答案:2;1;0;直线。
16、3条直线两两相交,最多有___个交点,最少有___个交点。
答案:3;1。
17、1平角等于___直角,等于____周角,等于____度。
答案:2,1/2,180。
18、两点之间____最短。
答案:线段。
19、两点确定一条____。
答案:直线。
20、几何的基本元素是____。
答案:点。
好不容易给你找了20道,有一个一个打上去,累得我够呛的,我是第一个答题的,答的好的话加分喔。
100分也不用追了,你一级会有多少分。

89%的优秀读者还看下:

暂无相关信息

文章关键词